题目内容

如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点P为AB边上任一点,过P分别作PE⊥AC于E,PF⊥BC于F,则线段EF的最小值是________.


分析:根据勾股定理求出AB,证矩形EPFC,推出EF=CP,过C作CD⊥AB,得到CD=EF,求出CD的长即可.
解答:连接CP,
∵∠ACB=90°,AC=3,BC=4,由勾股定理得:AB=5,
∵PE⊥AC,PF⊥BC,
∴∠PEC=∠PFC=∠ACB=90°,
∴四边形EPFC是矩形,
∴EF=CP,
即EF表示C与边AB上任意一点的距离,
根据垂线段最短,
过C作CD⊥AB,
当EF=DC最短,
根据三角形面积公式得:AC×BC=AB×CD,
∴CD=
故答案为:
点评:本题主要考查对矩形的性质和判定,三角形的面积,垂线段最短,勾股定理等知识点的理解和掌握,能得到CD=EF是解此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网