题目内容
如果抛物线y=与x轴有一个交点,则m=_____.
写出一个解为x≥1的一元一次不等式:_____________.
计算:
在∠A(0°<∠A<90°)的内部画线段,并使线段的两端点分别落在角的两边AB、AC上,如图所示,从点A1开始,依次向右画线段,使线段与线段在两端点处互相垂直,A1A2为第1条线段.设AA1=A1A2=A2A3=1,则∠A =_____;若记线段A2n-1A2n的长度为an(n为正整数),如A1A2=a1,A3A4=a2,则此时a2=_______,an=________(用含n的式子表示).
对于函数y=﹣x2﹣2x﹣1,请回答下列问题:
(1)图象的对称轴,顶点坐标各是什么?
当x取何值时,函数有最大(小)值,函数最大(小)值是多少?
(2)求抛物线与x轴的交点,与y轴的交点坐标是什么?
若抛物线的顶点为(3,5),则此抛物线的解析式可设为_____.
对于任意实数h,抛物线y=(x﹣h)2与抛物线y=x2( )
A. 开口方向相同 B. 对称轴相同 C. 顶点相同 D. 都有最高点
如图,正方形OABC的边OA、OC均在坐标轴上,双曲线y=(x>0)经过OB的中点D,与AB边交于点E,与CB边交于点F,直线EF与x轴交于G. 若S△ OAE=4.5,则点G的坐标是________.
下面是数学课堂的一个学习片段, 阅读后, 请回答下面的问题:
学习勾股定理有关内容后, 张老师请同学们交流讨论这样一个问题: “已知直角三角形ABC的两边长分别为3和4, 请你求出第三边.”
同学们经片刻的思考与交流后, 李明同学举手说: “第三边长是5”; 王华同学说: “第三边长是.” 还有一些同学也提出了不同的看法……
(1)假如你也在课堂上, 你的意见如何? 为什么?
(2)通过上面数学问题的讨论, 你有什么感受? (用一句话表示)