题目内容

【题目】如图,等边△A1C1C2的周长为1,作C1D1A1C2D1,在C1C2的延长线上取点C3,使D1C3D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2A2C3D2,在C2C3的延长线上取点C4,使D2C4D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1A2A3,…都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△AnnCn+1的周长和为_____.(n2,且n为整数)

【答案】

【解析】

根据等边三角形的性质分别求出△A1C1C2,△A2C2C3,△A3C3C4,△AnCnCn+1的周长即可解决问题.

解:∵等边△A1C1C2的周长为1,作C1D1A1C2D1

A1D1D1C2

∴△A2C2C3的周长=A1C1C2的周长=

∴△A1C1C2,△A2C2C3,△A3C3C4,△AnnCn+1的周长分别为1

∴△A1C1C2,△A2C2C3,△A3C3C4,△AnnCn+1的周长和为1+++…+

故答案为:

练习册系列答案
相关题目

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网