题目内容
下列三个命题中,是真命题的有( )
①对角线相等的四边形是矩形;
②三个角是直角的四边形是矩形;
③有一个角是直角的平行四边形是矩形.
A. 3个 B. 2个 C. 1个 D. 0个
问题背景:“半角问题”:
(1)如图:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.
小明同学探究此“半角问题”的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;(直接写结论,不需证明)
探索延伸:当聪明的你遇到下面的问题该如何解决呢?
(2)若将(1)中“∠BAD=120°,∠EAF=60°”换为∠EAF=∠BAD.其它条件不变。如图1,试问线段EF、BE、FD具有怎样的数量关系,并证明.
(3)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,请直接写出线段EF、BE、FD它们之间的数量关系.(不需要证明)
(4)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,试问线段EF、BE、FD具有怎样的数量关系,并证明.
平面直角坐标系下有序数对(2x﹣y,x+y)表示的点为(5,4),则x=___,y=___.
中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了 名学生;
(2)将图1、图2补充完整;
(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).
因式分解4m2﹣n2=_______.
下面角的图示中,能与30°角互补的是( )
A. B. C. D.
某同学练习推铅球,铅球推出后在空中飞行的路线是一条抛物线,铅球在离地面0.5米高的A处推出,推出后达到最高点B时的高度是2.5米,水平距离是4米,铅球在地面上点C处着地.
(1)根据如图所示的直角坐标系求抛物线的解析式;
(2)这个同学推出的铅球有多远?
在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( )
比较大小:﹣(﹣3)___﹣|﹣3| (填“<”、“=”或“>”).