题目内容
的平方根是( )
A. B. C. D.
C
【解析】
试题分析:∵(±)2=
∴=
故选C
考点: 平方根
如图,菱形ABCD中,AC,BD交于O,AC=8m,BD=6m,动点M从A出发沿AC方向以2m/s匀速直线运动到C,动点N从B出发沿BD方向以1m/s匀速直线运动到D,若M,N同时出发,问出发后几秒钟时,ΔMON的面积为
若, 则( ).
A.、3 B、 5 C、-1 D、-5
如图,在Rt△ABC中,∠A=90°,平分∠ABC,交于点,且,,则点到的距离是________.
若,为实数,且,则的值为( )
(本题满分14分)如图1,四边形ABCD是边长为的正方形,长方形AEFG的宽,长.将长方形AEFG绕点A顺时针旋转15°得到长方形AMNH (如图2),这时BD与MN相交于点O.
(1)求的度数;
(2)在图2中,求D、N两点间的距离;
(3)若把长方形AMNH绕点A再顺时针旋转15°得到长方形ARTZ,请问此时点B在矩形ARTZ的
内部、外部、还是边上?并说明理由.
(本题满分9分)某渔船出海捕鱼,2010年平均每次捕鱼量为10吨,2012年平均每次捕鱼量为8.1吨,求2010年至2012年每年平均每次捕鱼量的年平均下降率.
用直接开平方法解下列一元二次方程,其中无解的方程为( )
(A)-5=0 (B)-3=0
(C)+4=0 (D)=0
(本题满分10分)已知:如图,矩形ABCD中,CD=2,AD=3,以C点为圆心,作一个动圆,与线段AD交于点P(P和A、D不重合),过P作⊙C的切线交线段AB于F点.
(1)求证:△CDP∽△PAF;
(2)设DP=x,AF=y,求y关于x的函数关系式,及自变量x的取值范围;
(3)是否存在这样的点P,使△APF沿PF翻折后,点A落在BC上,请说明理由.