题目内容

已知:如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.那么CD与AB的位置关系如何?为什么?

解:CD⊥AB.
理由:∵∠1=∠ACB,
∴DE∥BC,
∴∠2=∠BCD,
∵∠2=∠3,
∴∠3=∠BCD,
∴HF∥CD,
∵FH⊥AB于H,即∠FHB=90°,
∴∠CDB=∠90°,
即CD⊥AB.
分析:根据平行线的判定与性质可得,∠3=∠BCD,继而得HF∥CD,又FH⊥AB于H,即∠FHB=90°,可得∠CDB=∠90°,即CD⊥AB.
点评:本题主要考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网