题目内容
已知关于
的一元二次方程
的两个实数根为
,
.
(1)求k的取值范围。
(2)是否存在实数可k,使得
成立?若存在,请求出k值,若不存在,请说明理由.
(1)k≤
;
(2)存在实数k使得x1·x2-x12-x22≥0成立;理由见解析;
【解析】
试题分析:(1)由题意可得△≥0,即[﹣(2k+1)]2﹣4(k2+2k)≥0,通过解该不等式即可求得k的取值范围;
(2)假设存在实数k使得x1·x2-x12-x22≥0成立.由根与系数的关系可得x1+x2=2k+1,x1·x2=k2+2k,然后利用完全平方公式可以把x1·x2-x12-x22≥0转化为3x1·x2-(x1+x2)2≥0的形式,通过解不等式可以求得k的值.
试题解析:(1)∵原方程有两个实数根,
∴△≥0
即[﹣(2k+1)]2﹣4(k2+2k)≥0,
∴4k2+4k+1﹣4k2﹣8k≥0 ,
∴1﹣4k≥0,
∴k≤
,
∴当k≤
时,原方程有两个实数根;
(2)假设存在实数k使得x1·x2-x12-x22≥0成立,
∵x1,x2是原方程的两根,
∴x1+x2=2k+1,x1·x2=k2+2k,
由x1·x2-x12-x22≥0,
得3x1·x2-(x1+x2)2≥0
∴3(k2+2k)﹣(2k+1)2≥0,
整理得:﹣(k﹣1)2≥0,
∴只有当k=1时,上式才能成立;
又∵由(1)知k≤
,
∴不存在实数k使得x1·x2-x12-x22≥0成立;
考点:1、根与系数的关系;2、根的判别式
考点分析: 考点1:一元二次方程 定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一元二次方程的一般形式:
它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中 ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。 试题属性
- 题型:
- 难度:
- 考核:
- 年级:
练习册系列答案
相关题目