题目内容
若,则的值是 .
我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结,,,…得到螺旋折线(如图),已知点(0,1),(,0),(0,),则该折线上的点的坐标为( )
A.(,24) B.(,25) C.(,24) D.(,25)
(第10题图)
如图,∠AOB=45°,点M、N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P、M、N构成等腰三角形的点P恰好有三个,则x的值是 .
在一节数学课上,老师出示了这样一个问题让学生探究:
已知:如图在△ABC中,点D 是BA边延长线上一动点,点F 在BC上,且,连接DF交AC于点E .
(1)如图1,当点E恰为DF的中点时,请求出的值;
(2)如图2,当时,请求出的值(用含a的代数式表示).
思考片刻后,同学们纷纷表达自己的想法:
甲:过点F作FG∥AB交AC于点G,构造相似三角形解决问题;
乙:过点F作FG∥AC交AB于点G,构造相似三角形解决问题;
丙:过点D作DG∥BC交CA延长线于点G,构造相似三角形解决问题;
老师说:“这三位同学的想法都可以” .
请参考上面某一种想法,完成第(1)问的求解过程,并直接写出第(2)问的值.
图1 图2
已知:如图,在△ABC中,∠C=90º,D是BC上一点, DE⊥AB于E,若AC=6,AB=10,DE =2.
(1)求证:△BED∽△BCA;
(2)求BD的长.
直线y=2x经过( )
A. 第二、四象限 B. 第一、二象限 C. 第三、四象限 D. 第一、三象限.
如图,四张三角形纸片中有三个是完全相同的直角三角形,另一个也有一边长与其他三个直角三角形的斜边长相等,把这四张纸片放在盒子里搅匀,然后随机抽取两张,将这两张纸片不重叠地进行拼接,有下列情况:能拼成矩形;能拼成平行四边形;能拼成等腰三角形;只能拼成一般四边形.问:这4种情况的可能性大小一样吗?请说明理由.
为了了解某学校初四年纪学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):
(1)根据以上信息回答下列问题:
①求m值.
②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.
③补全条形统计图.
(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.
如图,是反比例函数和(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A,B两点,若S△AOB=2,则k2﹣k1的值是( )
A. 1 B. 2 C. 4 D. 8