题目内容
某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为 .
如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交边AD、BC于E、F两点,则阴影部分的面积是( )
A. 1 B. 2 C. 3 D. 4
如图,连接在一起的两个正方形的边长都为1cm,现有一个微型机器人由点A开始按从A→B→C→D→E→F→C→G→A…的顺序沿正方形的边循环移动.当微型机器人移动了2018cm时,它停在_____点.
探究活动一:
如图1,正方形ABCD和正方形QMNP,∠M=∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E,线段ME与线段MF的数量关系是 .(不必证明,直接给出结论即可)
探究活动二:
如图2,将上题中的“正方形”改为“矩形”,且AB=mBC,其他条件不变(矩形ABCD和矩形QMNP,∠M=∠B,M是矩形ABCD的对称中心,MN交AB于F,QM交AD于E),探究并证明线段ME与线段MF的数量关系;
探究活动三:
根据前面的探索和图3,平行四边形ABCD和平行四边形QMNP中,若AB=mBC,∠M=∠B,M是平行四边形ABCD的对称中心,MN交AB于F,QM交AD于E,请探究并证明线段ME与线段MF的数量关系.
解方程
(1)x2﹣2x﹣2=0
(2)(x+1)2=4(x﹣1)2.
如图,点C、D在线段AB上,△PCD是等边三角形,当△ACP∽△PDB时,∠APB的度数为( )
A. 100° B. 120° C. 115° D. 135°
从三角形不是等腰三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
如图1,在中,CD为角平分线,,,求证:CD为的完美分割线.
在中,,CD是的完美分割线,且为等腰三角形,求的度数.
如图2,中,,,CD是的完美分割线,且是以CD为底边的等腰三角形,求完美分割线CD的长.
反比例函数图象上有三个点,,,其中,则,,的大小关系是
A. B. C. D.
对于算式20172﹣2017,下列说法不正确的是( )
A. 能被2016整除 B. 能被2017整除
C. 能被2018整除 D. 不能被2015整除