题目内容
在如图所示的网格中,每个小正方形的边长都为1.
(1)试作出直角坐标系,使点A的坐标为(2,-1);
(2)在(1)中建立的直角坐标系中描出点B(3,4),C(0,1),并求三角形ABC的面积.
已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠COE=40°时,求∠AOB的度数.
【解析】∵OE是∠COB的平分线,
∴∠COB=________(理由:________).
∵∠COE=40°,
∴________.
∵∠AOC=________,
∴∠AOB=∠AOC+________=110°.
计算a3·a2的结果是( )
A. a B. a5 C. a6 D. a9
如图,有下列判断①∠1与∠3是对顶角 ②∠1与∠4是内错角 ③ ∠1与∠2 是同旁内角 ④∠3与∠4是同位角,其中不正确的是( )
A. ① B. ② C. ③ D. ④
如图,把三角形ABC沿BC的方向平移到三角形DEF的位置,若CF=4,BC=5,则下列结论中错误的是( )
A. BE=4 B. AC=DF C. DF=5 D. AB∥DE
在一次数学活动课上,老师让同学们用两个大小、形状都相同的三角板画平行线AB、CD, 并说出自己做法的依据. 小琛、小萱、小冉三位同学的做法如下:
小琛说:“我的做法的依据是内错角相等,两直线平行. ”
小萱做法的依据是______________________.
小冉做法的依据是______________________.
如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是( )
A. 65° B. 55° C. 50° D. 25°
利用分式的基本性质约分:=_________________.
如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为1个单位,运动时间为t秒.过点P作PE⊥AO交AB于点E.
(1)求直线AB的解析式;
(2)设△PEQ的面积为S,求S与t时间的函数关系,并指出自变量t的取值范围;
(3)在动点P、Q运动的过程中,点H是矩形AOBC内(包括边界)一点,且以B、Q、E、H为顶点的四边形是菱形,直接写出t值和与其对应的点H的坐标.