题目内容
已知边长为a的正三角形ABC,两顶点A、B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC的长的最大值是________.
分析:根据题意可知,当AB的中点D、O、C三点共线时OC最长,再结合等边三角形的性质即可得出本题的答案.
解答:
∵△ABC为等边三角形,
∴AB=BC=AC=a,根据三角形的性质可知:OD=
∴OC=
点评:本题考查的是等边三角形的性质;要注意直角三角形斜边中点到三顶点距离相等,即等于斜边的一半.
练习册系列答案
相关题目
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:

(1)sad
的值为( ▼ )
(2)对于
,∠A的正对值sad A的取值范围是 ▼ .
(3)已知
,其中
为锐角,试求sad
的值.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
根据上述对角的正对定义,解下列问题:
(1)sad
| A. | B.1 | C. | D.2 |
(3)已知
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:![]()
(1)sad
的值为( ▼ )
| A. | B.1 | C. | D.2 |
(3)已知