题目内容
如图,∠MON=90°,点A,B分别在射线OM,ON上移动,∠OAB的平分线与∠OBA的外角平分线交于点C,试猜想:随着点A,B的移动,∠ACB的大小是否发生变化,并说明理由.
如图,马路的两边CF、DE互相平行,线段CD为人行横道,马路两侧的A、B两点分别表示车站和超市,CD与AB所在直线互相平行,且都与马路的两边垂直.马路宽20米,A,B相距62米,∠A=67°,∠B=37°.求CD与AB之间的距离.(参考数据:sin67°≈,cos67°≈,tan67°≈,sn37°≈,cos37°≈,tan37°≈)
如图所示,在平行四边形ABCD中,对角线AC、BD相交于点O,则下列结论中错误的是( )
A. OA=OC B. ∠ABC=∠ADC C. AB=CD D. AC=BD
如图,∠AOB是直角,∠AOC=38°,OD平分∠BOC,则∠AOD的度数为( )
A.52° B.38° C.64° D.26°
若∠C=90°,∠A=25°30',则∠C﹣∠A的结果是( )
A. 75°30' B. 74°30' C. 65°30' D. 64°30'
如图,图①中的多边形(边数为12)由正三角形“扩展”而来的,图②中的多边形(边数为20)是由正方形“扩展”而来的……依次类推,则由正n边形“扩展”而来的多边形的边数为____.
人站在晃动的公共汽车上.若你分开两腿站立,则需伸出一只手去抓栏杆才能站稳,这是利用了________.
计算:.
如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;
(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.