题目内容
菱形的判定:一组邻边相等的______是菱形;四条边______的四边形是菱形;对角线___
___的平行四边形是菱形.
平行四边形;相等,互相垂直.
如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连结DP交AC于点Q.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的;
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.
如图,□ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,画出图形并写出此时AC绕点O顺时针旋转的度数.
下列命题中,正确的是( ).
(A)两邻边相等的四边形是菱形
(B)一条对角线平分一个内角的平行四边形是菱形
(C)对角线垂直且一组邻边相等的四边形是菱形
(D)对角线垂直的四边形是菱形
如图,矩形ABCD中,AB=6cm,BC=8cm,若将矩形折叠,使点B与D重合,求折痕EF的长。
如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连结CE,则CE的长______.
三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.
已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:
①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;
②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;
③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;
④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).
(A)①② (B)①③④ (C)②③ (D)②③④