题目内容
-3的绝对值是( )
A. B. C.3 D.-3
计算:.
已知反比例函数y=的图像如图所示,则k的取值范围是( )
A.k<0 B.k<3 C. k>0 D.k>3
从-1,0,,π,中随机任取一数,取到无理数的概率是 .
如图,点A是反比例函数的图像上的一点,过点A作x轴,垂足为B.点C为y轴上的一点,连接AC,BC. 若 △ABC的面积为3,则k的值是( )
A.3 B.-3 C.6 D.-6
小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的. 规定①玩家只能将小兔从A、B两个出入口放入,②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.
(1)问小美得到小兔玩具的机会有多大?
(2)假设有100人次玩此游戏, 估计游戏设计者可赚多少元?
如图,一段抛物线y=-x(x-3)(0≤x≤3),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x 轴于点A2;将C2绕点A2旋转180°得C3,交x 轴于点A3;……如此进行下去,得到一条“波浪线”.若点P(35,m)在此“波浪线”上,则m的值为 .
动手实验:利用矩形纸片(如图1)剪出一个正六边形纸片;再利用这个正六边形纸片做一个无盖的正六棱柱(棱柱底面为正六边形) ,如图2.
(1) 做一个这样的正六棱柱所需最小的矩形纸片的长与宽的比为多少?
(2) 在(1)的条件下,当矩形的长为2a时,要使无盖正六棱柱侧面积最大,正六棱柱的高为多少?并求此时矩形纸片的利用率为多少?
请写出一个大于3且小于4的无理数: .