题目内容
如图,在等腰直角三角形ABC中,AD为斜边上的高,以D为端点任作两条垂直的射线与两腰相交于E,F两点,连接EF与AD相交于G,若∠AED=110°,则∠AGF=________.
110°
分析:根据等腰直角三角形得出AD平分∠BAC,AD=BD=DC,AD⊥BC,推出∠BAD=∠DAC=∠B=∠45°,∠ADC=90°,求出∠ADF=∠BDE,根据ASA证△BDE≌△ADF,推出DE=DF,根据等腰直角三角形得出∠DEF=45°=∠EFD,根据三角形的外角性质求出即可.
解答:∵△BAC是等腰直角三角形(∠BAC=90°),D为BC中点,
∴AD平分∠BAC,AD=BD=DC,AD⊥BC,
∴∠BAD=∠DAC=∠B=∠45°,∠ADC=90°,
∵DE⊥DF,
∴∠EDF=∠ADC=90°,
∴∠ADF+∠CDF=90°,∠CDF+∠BDE=90°,
∴∠ADF=∠BDE,
在△BDE和△ADF中
,
∴△BDE≌△ADF(ASA),
∴DE=DF,
∵∠EDF=90°,
∴∠DEF=45°=∠EFD,
∵∠AED=110°,∠EAD=∠FED=45°,
∴∠AGF=∠AEG+∠EAG=(110°-45°)+45°=110°,
故答案为:110°.
点评:本题考查了等腰直角三角形,全等三角形的性质和判定,主要培养学生运用定理进行推理的能力,题目比较好,但有一定的难度.
分析:根据等腰直角三角形得出AD平分∠BAC,AD=BD=DC,AD⊥BC,推出∠BAD=∠DAC=∠B=∠45°,∠ADC=90°,求出∠ADF=∠BDE,根据ASA证△BDE≌△ADF,推出DE=DF,根据等腰直角三角形得出∠DEF=45°=∠EFD,根据三角形的外角性质求出即可.
解答:∵△BAC是等腰直角三角形(∠BAC=90°),D为BC中点,
∴AD平分∠BAC,AD=BD=DC,AD⊥BC,
∴∠BAD=∠DAC=∠B=∠45°,∠ADC=90°,
∵DE⊥DF,
∴∠EDF=∠ADC=90°,
∴∠ADF+∠CDF=90°,∠CDF+∠BDE=90°,
∴∠ADF=∠BDE,
在△BDE和△ADF中
∴△BDE≌△ADF(ASA),
∴DE=DF,
∵∠EDF=90°,
∴∠DEF=45°=∠EFD,
∵∠AED=110°,∠EAD=∠FED=45°,
∴∠AGF=∠AEG+∠EAG=(110°-45°)+45°=110°,
故答案为:110°.
点评:本题考查了等腰直角三角形,全等三角形的性质和判定,主要培养学生运用定理进行推理的能力,题目比较好,但有一定的难度.
练习册系列答案
相关题目
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:

(1)sad
的值为( ▼ )
(2)对于
,∠A的正对值sad A的取值范围是 ▼ .
(3)已知
,其中
为锐角,试求sad
的值.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
根据上述对角的正对定义,解下列问题:
(1)sad
| A. | B.1 | C. | D.2 |
(3)已知
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:![]()
(1)sad
的值为( ▼ )
| A. | B.1 | C. | D.2 |
(3)已知