题目内容


如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=(     )

A.40°   B.30°    C.20°   D.10°


D【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).

【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.

【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,

∴∠B=90°﹣50°=40°,

∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,

∵∠CA'D是△A'BD的外角,

∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.

故选:D.

【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网