题目内容
【题目】如图,把一张矩形纸片折叠,点A与点C重合,折痕为EF,再将△CDF沿CF折叠,点D恰好落在EF上的点M处,若BC=6厘米,则EF的长为_____厘米.
![]()
【答案】4
【解析】
由矩形的性质可得AD=BC=6cm,∠D=90°,AD∥BC,由折叠的性质可得CD=CM,∠D=∠FMC=60°,FD=FM,∠DFC=∠MFC,AF=CF,∠AFE=∠EFC,由平角的定义可得AFE=∠EFC=∠DFC=60°,可证△EFC是等边三角形,可求解.
解:∵四边形ABCD是矩形
∴AD=BC=6cm,∠D=90°,AD∥BC
∵把一张矩形纸片折叠,点A与点C重合,
∴AF=CF,∠AFE=∠EFC
∵将△CDF沿CF折叠,点D恰好落在EF上的点M处,
∴CD=CM,∠D=∠FMC=60°,FD=FM,∠DFC=∠MFC
∴∠AFE=∠EFC=∠DFC,且∠AFE+∠EFC+∠DFC=180°
∴∠AFE=∠EFC=∠DFC=60°,
∴∠FCD=30°
∴FC=2FD,
∴AF=2FD,
∵AD= BC=6厘米,
∴FD=2厘米,AF=4厘米=FC,
∵AD//BC
∴∠AFE=∠FEC=60°,且∠EFC=60°
∴△EFC是等边三角形
∴EF=FC=4厘米
故答案为:4
![]()
【题目】小明根据学习函数的经验,对函数y=
+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:
(1)函数y=
+1的自变量x的取值范围是 ;
(2)下表列出了y与x的几组对应值,请写出m,n的值:m= ,n= ;
x | … | ﹣ | ﹣1 | ﹣ | 0 |
|
| 2 |
| 3 |
| … |
y | … |
| m |
| 0 | ﹣1 | n | 2 |
|
|
| … |
(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.
![]()
(4)结合函数的图象,解决问题:
①写出该函数的一条性质:
②当函数值
+1>
时,x的取值范围是:
③方程
+1=x的解为: