题目内容

在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.

(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;

(2)当四边形ABCD是平行四边形时,如图2,已知AC=BD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;

(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.

 

 

 

 

解:(1)AC′=BD′,∠AMB=α,

证明:在矩形ABCD中,AC=BD,OA=OC=AC,OB=OD=BD,

∴OA=OC=OB=OD,

又∵OD=OD′,OC=OC′,

∴OB=OD′=OA=OC′,

∵∠D′OD=∠C′OC,

∴180°-∠D′OD=180°-∠C′OC,

∴∠BOD′=∠AOC′,

∴△BOD′≌△AOC′,

∴BD′=AC′,

∴∠OBD′=∠OAC′,

设BD与OA相交于点N,

∴∠BNO=∠ANM,

∴180°-∠OAC′-∠ANM=180°-∠OBD′-∠BNO,

即∠AMB=∠AOB=∠COD=α,

综上所述,BD′=AC′,∠AMB=α,

 

(2)AC′=kBD′,∠AMB=α,

证明:在平行四边形ABCD中,OB=OD,OA=OC,

又∵OD=OD′,OC=OC′,

∴OB:OA=OD′:C′,

∵∠D′OD=∠C′OC,

∴180°-∠D′OD=180°-∠C′OC,

∴∠BOD′=∠AOC′,

∴△BOD′∽△AOC′,

∴BD′:AC′=OB:OA=BD:AC,

∵AC=kBD,

∴AC′=kBD′,

∵△BOD′∽△AOC′,

设BD′与OA相交于点N,

∴∠BNO=∠ANM,

∴180°-∠OAC′-∠ANM=180°-∠OBD′-∠BNO,即∠AMB=∠AOB=α,

综上所述,AC′=kBD′,∠AMB=α,

(3)AC′=BD′成立,∠AMB=α不成立.

解析:略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网