题目内容
如图,在□ABCD中,E、F为对角线BD上的两点.
(1)若AE⊥BD,CF⊥BD,证明BE=DF.
(2)若AE=CF,能否说明BE=DF?若能,请说明理由;若不能,请画出反例.
一个长方体的长宽高分别为a2,a,a3,则这个长方体的体积是 .
因式分解
(1) (2)
(3) (4)
多项式是完全平方式,则的值是( )
A. 20 B. 10 C. 10或-10 D. 20或-20
如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5.在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
(1)若∠1=70°,求∠MKN的度数.
(2)△MNK的面积能否小于?若能,求出此时∠1的度数;若不能,试说明理由.
(3)如何折叠能够使△MNK的面积最大?请你利用备用图探究可能出现的情况,求出最大值.
如图,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE折叠,使点A正好与CD上的F点重合,若△FDE的周长为16,△FCB的周长为28,则FC的长为 .
某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa时,气球将爆炸.为了安全起见,气球的体积应( )
A.不小于m3 B.小于m3 C.不小于m3 D.小于m3
在△ABC中,AD⊥BC,垂足为D,AD=12,AB=15,AC=13,则△ABC的面积为 。
的值是( )
A.-3 B. 3 C.9 D.-9