题目内容


如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)

 


【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.

【专题】应用题.

【分析】过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.

【解答】解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,

在Rt△CEF中,

∵i===tan∠ECF,

∴∠ECF=30°,

∴EF=CE=10米,CF=10米,

∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,

在Rt△AHE中,∵∠HAE=45°,

∴AH=HE=(25+10)米,

∴AB=AH+HB=(35+10)米.

答:楼房AB的高为(35+10)米.

【点评】本题考查了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是解题关键.

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网