题目内容
【题目】已知抛物线的解析式是y=x2﹣(k+2)x+2k﹣2.
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若抛物线与直线y=x+k2﹣1的一个交点在y轴上,求该二次函数的顶点坐标.
【答案】(1)此抛物线与x轴必有两个不同的交点;(2)(
,﹣
).
【解析】
(1)由△=[-(k+2)]2-4×1×(2k-2)=k2-4k+12=(k-2)2+8>0可得答案;
(2)先根据抛物线与直线y=x+k2-1的一个交点在y轴上得出2k-2=k2-1,据此求得k的值,再代入函数解析式,配方成顶点式,从而得出答案.
(1)∵△=[﹣(k+2)]2﹣4×1×(2k﹣2)
=k2﹣4k+12
=(k﹣2)2+8>0,
∴此抛物线与x轴必有两个不同的交点;
(2)∵抛物线与直线y=x+k2﹣1的一个交点在y轴上,
∴2k﹣2=k2﹣1,
解得k=1,
则抛物线解析式为y=x2﹣3x=(x﹣
)2﹣
,
所以该二次函数的顶点坐标为(
,﹣
).
练习册系列答案
相关题目