题目内容
若一个多边形的内角和比外角和大360°,则这个多边形的边数为 .
如图,已知直线被直线c所截,,,则的度数为( )
A. B. C. D.
我们知道,一元二次方程没有实数根,即不存在一个实数的平方等于-1,若我们规定一个“新数”,使其满足(即方程有一个根为),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,从而对任意正整数n,我们可得到同理可得那么, 的值为( )
A. 0 B. 1 C. -1 D.
在正方形网格中以点A为圆心,AB为半径作圆A交网格于点C(如图(1)),过点C作圆的切线交网格于点D,以点A为圆心,AD为半径作圆交网格于点E(如图(2)).
问题:
(1)求∠ABC的度数;
(2)求证:△AEB≌△ADC;
(3)△AEB可以看作是由△ADC经过怎样的变换得到的?并判断△AED的形状(不用说明理由).
(4)如图(3),已知直线a,b,c,且a∥b,b∥c,在图中用直尺、三角板、圆规画等边三角形A′B′C′使三个顶点A′,B′,C′,分别在直线a,b,c上.要求写出简要的画图过程,不需要说明理由.
如图,在平面直角坐标系中,已知点A(0,1)、点B(0,1+t)、C(0,1﹣t)(t>0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是__.
晓明家到学校的路程是3 500米,晓明每天早上7∶30离家步行去上学,在8∶10(含8∶10)至8∶20(含8∶20)之间到达学校。如果设晓明步行的速度为x米/分,则晓明步行的速度范围是( )
A. 70≤x≤87.5 B. x≤70或x≥87.5 C. x≤70 D. . x≥87.5
如果a与-3互为相反数,则a等于( )
A. B. 3 C. - D. -3
有两个全等的含30°角的直角三角板重叠在一起,如图,将△A′B′C′绕AC的中点M转动,斜边A′B′刚好过△ABC的直角顶点C,且与△ABC的斜边AB交于点N,连接AA′、C′C、AC′.若AC的长为2,有以下五个结论:①AA′=1;②C′C⊥A′B′;③点N是边AB的中点;④四边形AA′CC′为矩形;⑤A′N=B′C=,其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
如果用c表示摄氏温度,f表示华氏温度,则c与f之间的关系为:,试分别求:
(1)当=68和=-4时,的值;
(2)当=10时,的值.