题目内容


如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=(x>0)上,则k的值为(  )

  A. 2 B. 3 C. 4 D. 6


B

考点: 反比例函数图象上点的坐标特征;坐标与图形变化-旋转. 

分析: 由旋转可得点D的坐标为(3,2),那么可得到点C的坐标为(3,1),那么k等于点C的横纵坐标的积.

解答: 解:易得OB=1,AB=2,

∴AD=2,

∴点D的坐标为(3,2),

∴点C的坐标为(3,1),

∴k=3×1=3.

故选:B.

点评: 解决本题的关键是利用旋转的性质得到在反比例函数上的点C的坐标.

 


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网