题目内容
【题目】已知:如图(1),射线AM∥射线BN,AB是它们的公垂线,点D、C分别在AM、BN上运动(点D与点A不重合、点C与点B不重合),E是AB边上的动点(点E与A、B不重合),在运动过程中始终保持DE⊥EC.
(1)求证:△ADE∽△BEC;
(2)如图(2),当点E为AB边的中点时,求证:AD+BC=CD;
(3)当 AD+DE=AB=
时.设AE=m,请探究:△BEC的周长是否与m值有关?若有关,请用含有m的代数式表示△BEC的周长;若无关,请说明理由.
![]()
【答案】(1)详见解析;(2)详见解析;(3)
的周长与m值无关,理由详见解析.
【解析】
(1)由直角梯形ABCD中∠A为直角,得到三角形ADE为直角三角形,可得出两锐角互余,再由DE与EC垂直,利用垂直的定义得到∠DEC为直角,利用平角的定义推出一对角互余,利用同角的余角相等可得出一对角相等,再由一对直角相等,利用两对对应角相等的两三角形相似可得证;
(2)延长DE、CB交于F,证明△ADE≌△BFE,根据全等三角形的性质得到DE=FE,AD=BF由CE⊥DE,得到直线CE是线段DF的垂直平分线,由线段垂直平分线的性质得DC=FC.即可得到结论;
(3)△BEC的周长与m的值无关,理由为:设AD=x,由AD+DE=a,表示出DE.在直角三角形ADE中,利用勾股定理列出关系式,整理后记作①,由AB﹣AE=EB,表示出BE,根据(1)得到:△ADE∽△BEC,由相似得比例,将各自表示出的式子代入,表示出BC与EC,由EB+EC+BC表示出三角形EBC的周长,提取a﹣m后,通分并利用同分母分式的加法法则计算,再利用平方差公式化简后,记作②,将①代入②,约分后得到一个不含m的式子,即周长与m无关.
(1)∵直角梯形ABCD中,∠A=90°,
∴∠ADE+∠AED=90°,
又∵DE⊥CE,
∴∠DEC=90°,
∴∠AED+∠BEC=90°,
∴∠ADE=∠BEC,
又∵∠A=∠B=90°,
∴△ADE∽△BEC;
(2)延长DE、CB交于F,如图2所示.
∵AD∥BC,
∴∠A=∠EBF,∠ADE=∠F.
∵E是AB的中点,
∴AE=BE.
在△ADE和△BFE中,∵∠A=∠EBF,∠ADE=∠F,AE=BE,
∴△ADE≌△BFE,
∴DE=FE,AD=BF.
∵CE⊥DE,
∴直线CE是线段DF的垂直平分线,
∴DC=FC.
∵FC=BC+BF=BC+AD,
∴AD+BC=CD.
![]()
(3)△BEC的周长与m的值无关,理由为:
设AD=x,由AD+DE=AB=a,得:DE=a﹣x.
在Rt△AED中,根据勾股定理得:AD2+AE2=DE2,即x2+m2=(a﹣x)2,
整理得:a2﹣m2=2ax,…①
在△EBC中,由AE=m,AB=a,得:BE=AB﹣AE=a﹣m.
∵由(1)知△ADE∽△BEC,
∴
,即
,
解得:BC
,EC
,
∴△BEC的周长=BE+BC+EC=(a﹣m)![]()
=(a﹣m)(1
)=(a﹣m)![]()
,…②
把①代入②得:△BEC的周长=BE+BC+EC
2a,
则△BEC的周长与m无关.