题目内容

如图,△ABC的三边长分别是AB=14,BC=16,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,求PM的长.
分析:延长BP交AC于点E,首先证明△APB≌△APE,可得AB=AE=14,PE=PB,进而得到EC=12,再根据三角形中位线定理可以计算出PM=
1
2
EC=6.
解答:解:延长BP交AC于点E,
∵AD为∠BAC的平分线,
∴∠BAP=∠EAP,
∵BP⊥AD于D,
∴∠APB=∠APE=90°,
在△APB和△APE中,
∠BAP=∠EAP
AP=AP
∠APB=∠APE=90°   

∴△APB≌△APE(ASA),
∴AB=AE=14,
∵AC=26,
∴EC=26-14=12,
∵△APB≌△APE,
∴BP=EP,
∵M是BC的中点,
∴PM=
1
2
EC=
1
2
×12=6.
点评:此题主要考查了全等三角形的判定与性质,以及三角形中位线定理,关键是证明出△APB≌△APE,得到AB=AE=14,PE=PB.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网