题目内容

如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.

(1)求该抛物线的解析式.

(2)若过点A(﹣1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.

(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.

解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),

∴假设二次函数解析式为:y=a(x﹣1)(x﹣3),

将D(0,3),代入y=a(x﹣1)(x﹣3),得:

3=3a,∴a=1,

∴抛物线的解析式为:y=(x﹣1)(x﹣3)=x2﹣4x+3;

(2)∵过点A(﹣1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,

∴AC×BC=6,

∵抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,

∴二次函数对称轴为x=2,

∴AC=3,

∴BC=4,

∴B点坐标为:(2,4),

一次函数解析式为;y=kx+b,

,解得:

y=x+;

(3)∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,

∴MO⊥AB,AM=AC,PM=PC,

∵AC=1+2=3,BC=4,

∴AB=5,AM=3,

∴BM=2,

∵∠MBP=∠ABC,

∠BMP=∠ACB,

∴△ABC∽△CBM,

∴PC=1.5,

P点坐标为:(2,1.5).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网