题目内容
下列各项中,给出的三条线段能组成三角形的是( )
A.1,2,3 B.2,3,5 C.4,6,8 D.5,6,12
解方程:
(1)2x﹣(x+10)=6x
(2)1﹣.
如图,五角星的五个角都是顶角为36°的等腰三角形,则∠AMB的度数为( )
A.144° B.120° C.108° D.100°
如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .
到三角形三条边的距离都相等的点是这个三角形的( )
A.三条中线的交点
B.三条高的交点
C.三条边的垂直平分线的交点
D.三条角平分线的交点
如图,已知△ABC,按下列语句要求用尺规作图(保留作图痕迹,不写作法);
(1)作出BC的垂直平分线DE,垂足为D,交AC于点E;
(2)作出∠ACB的角平分线CF,交AB于点F;
(3)在BC上找出一点P,使△PEF的周长最小.
已知等腰△ABC中,AB=AC,D是BC边上一点,连接AD,若△ACD和△ABD都是等腰三角形,则∠C的度数是 .
【问题背景】
在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图1中线段BE、EF、FD之间的数量关系.
【初步探索】
小亮同学认为:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,则可得到 BE、EF、FD之间的数量关系是 .
【探索延伸】
在四边形ABCD中如图2,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,∠EAF=∠BAD,上述结论是否任然成立?说明理由.
【结论运用】
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角(∠EOF)为70°,试求此时两舰艇之间的距离.
如图所示,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连结A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2=B1A2,连结A2B2…按此规律下去,记∠A2B1 B2=θ1,∠A3B2B3=θ2,…,∠An+1Bn Bn+1=θn,则θ2016﹣θ2015的值为( )
A. B. C. D.