题目内容

如图, 中, ,若动点从点开始,按的路径运动一周,且速度为每秒,设出发的时间为秒.

)出发秒后,求的周长.

)问为何值时, 为等腰三角形?

)另有一点,从点开始,按的路径运动一周,且速度为每秒,若两点同时出发,当中有一点到达终点时,另一点也停止运动.当为何值时,直线的周长分成相等的两部分?

()的周长为;()当为、、、时, 为等腰三角形;()当为或秒时,直线把的周长分成相等的两部分. 【解析】试题分析:(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长; (2)因为AB与CB,由勾股定理得AC=4 因为AB为5cm,所以必须使AC=CB,或CB=AB,所以必须使AC或AB等于3,有两种情况,△BCP为等腰三角形...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网