题目内容
如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为 .
解方程:
(1) (用配方法解)
(2)3x(x-1)=2-2x(用适当的方法解)
如果二次函数的二次项系数为l,则此二次函数可表示为,我们称[p,q]为此函数的特征数,如函数的特征数是[2,3].
(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.
(2)若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.
某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,问二、三月份平均每月增长率是多少?设平均每月增长率为百分之x,则( )
A.
B.
C.
D.
如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:
(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.
其中正确的个数为( )
A.4个 B.3个 C.2个 D.1个
如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )
A.115° B.120° C.125° D.145°
有四张正面分别标有数字-3,0,1,5的不透明卡片,它们除数字外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x的分式方程有正整数解的概率为_ __.
如图1,P(m,n)是抛物线y=x2-1上任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H.
(1)填空:当m=0时,OP= ,PH= ;当m=4时,OP= ,PH= .
(2)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想.
(3)连接OH,是否存在这样的点P,使得△OPH为等边三角形?如果存在,求出点P的坐标;如果不存在,请说明理由.
(4)如图2,已知线段AB=6,端点A,B在抛物线y=x2-1上滑动,求A,B两点到直线l的距离之和的最小值.