题目内容
如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,如果∠ADC=26º,那么∠AOB的度数为( )
A.13º B.26º C.52º D.78º
某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).
表1
表2
(1)在表2中,a= ,b= ;
(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;
(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.
如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为 ( )
A.20° B.40° C.50° D.60°
已知:如图,C为BE上一点,点A、D分别在BE两侧,AB∥ED,AB=CE,BC=ED.
求证:AC=CD.
在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M,N,直线m运动的时间为t(秒).设△OMN的面积为S,那么能反映S与t之间函数关系的大致图象是( )
A. B. C. D.
已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.
(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,则CF,BC,CD三条线段之间有什么关系?并说明理由.
如图,在离水面高度(AC)为2米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米的速度收绳子.
问:(1)未开始收绳子的时候,图中绳子BC的长度是多少米?
(2)收绳2秒后船离岸边多少米?(结果保留根号)
下列多边形中,内角和与外角和相等的是( )
A.四边形 B.五边形 C.六边形 D.八边形
如图,正方形ABCD的对角线BD长为2,若直线l满足:
①点D到直线l的距离为;
②A、C两点到直线l的距离相等.
则符合题意的直线l的条数为( )
A、1 B、2 C、3 D、4