题目内容
【题目】如图,在平面直角坐标系xOy中,抛物线
与x轴交于A,B两点,与y轴交于点D,过点A的直线交抛物线于另一点C,点E为抛物线的顶点,连接CE,AE,设AE交y轴于点F,点A的坐标为
,且
,C、D两点关于对称轴对称.
![]()
(1)若
,求抛物线的解析式;
(2)在(1)的条件下,试探究抛物线上是否存在一点M,使
为以AC为直角边的直角三角形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由;
(3)设点P是直线AE上方抛物线上的一动点,若
的面积最大值为
,求a的值.
【答案】(1)
;(2)存在,点M的坐标为
或
;(3)![]()
【解析】
(1)过点E作
轴于点G,根据三角形中位线的性质求得点E的坐标,利用顶点式即可求得抛物线的解析式;
(2)作解图的辅助线,根据等腰直角三角形的判定和性质求得点
的坐标,求得直线AC的解析式及与直线AC相互垂直的直线
的解析式,联立直线
与抛物线的解析式即可求得点
的坐标;
(3)先求得点A、B的坐标,设抛物线的表达式为
,分别求得点E、F的坐标,设
,求得经过A、P两点的直线解析式,利用三角形的面积公式及二次的最值即可求得答案.
(1)如图,过点E作
轴于点G,
![]()
∵
,
∴F为AE的中点,
又∵
,
∴O为AC的中点,
,
∵
,
∴
,
∴
,
∵
,
∴
,
∴点E的坐标为
,
∵点E为抛物线的顶点,
∴设抛物线的解析式为
,
将点
代入得
,
解得:
,
∴抛物线的解析式为
;
(2)存在.
如图,分别过点A、C作
,
分别交抛物线于点
、
,过点
作
轴于点K,过点C作
轴于点J,连接CD、
,过点
作
于点L.
![]()
由(1)得
,
∴
,
∵顶点
,
∴抛物线的对称轴为直线
,
∵C、D两点关对称轴对称,
∴
,
①
时,
∵
,
∴∠CAJ=∠ACJ=45
,
∴∠
AK=90
∠CAJ=45
,
∴
,
设
的坐标为
,
∴
,
,
∴
,化简得
,
解得 :
,
,
∴点
的坐标为
;
②当
,
∵
,
,
∴
,
∴
,
∵
,
∴![]()
∵
,
∴
,
∴
,
设直线AC的解析式为
,直线
的解析式为
,
将
,
,代入
得:
,解得![]()
∴直线AC的解析式为
,
∵
,
∴
,即直线
的解析式
,
将
代入
,得
,
∴直线
的解析式为
,
联立直线
与抛物线的解析式得
,
解得
或
(与点C重合),
∴
,即点
与点E重合,
综上所述,点M的坐标为
或
;
(3)由(1)得
,抛物线的对称轴为直线
,
∵
,
∴![]()
设抛物线的表达式为
,
即
,
∴
,
∴
,
∴点P是直线AE上方抛物线上的动点,
如图,设
,连接AP,直线AP与y轴交于点Q,
![]()
设经过A、P两点的直线解析式为
,
则
,解得
,
∴经过A、P两点的直线解析式为
,
∴点
,
∴
,
∴
,
∵
的面积最大值为
,
,
∴
,
∴
.
【题目】在“五四青年节”来临之际,某校举办了以“我的青春我做主”为主题的演讲比赛. 并从参加比赛的学生中随机抽取部分学生的演讲成绩进行统计(等级:A:优秀,B:良好,C:一般,D:较差),并制作了如下统计图表(部分信息未给出):
等级 | 人数 |
A | m |
B | 20 |
C | n |
D | 10 |
![]()
请根据统计图表中的信息解答下列问题:
(1)这次共抽取了________名参加演讲比赛的学生,统计图中a=________,b=________;
(2)若该校学生共有2000人,如果都参加了演讲比赛,请你估计成绩达到优秀的有多少人?
(3)若演讲比赛成绩为A等级的学生中恰好有2名女生,其余的学生为男生,从A等级的学生中抽取两名同学参加全市演讲比赛,求抽中一名男生和一名女生的概率.