题目内容

如图,双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C,若点A的坐标为(-6,4),则△AOC的面积为

A.12               B.6                C.9                D.4

 

【答案】

C

【解析】

试题分析:△AOC的面积=△AOB的面积-△BOC的面积,由点A的坐标为(-6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积|k|.只需根据OA的中点D的坐标,求出k值即可.

:∵OA的中点是D,点A的坐标为(-6,4),

∴D(-3,2),

∵双曲线经过点D,

∴k=-3×2=-6,

∴△BOC的面积|k|=3.

又∵△AOB的面积×6×4=12,

∴△AOC的面积=△AOB的面积-△BOC的面积=12-3=9.

故选C.

考点:反比例函数的比例系数k的几何意义

点评:反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网