题目内容

如图,双曲线y=经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为5,则k的值是 _________ 

解:过A点作AC⊥x轴于点C,如图,

则AC∥NM,

∴△OAC∽△ONM,

∴OC:OM=AC:NM=OA:ON,

而OA=2AN,即OA:ON=2:3,设A点坐标为(a,b),则OC=a,AC=b,

∴OM=a,NM=b,

∴N点坐标为(a,b),

∴点B的横坐标为a,设B点的纵坐标为y,

∵点A与点B都在y=图象上,

∴k=ab=a•y,

∴y=b,即B点坐标为(a,b),

∵OA=2AN,△OAB的面积为5,

∴△NAB的面积为

∴△ONB的面积=5+=

NB•OM=,即×(b﹣b)×a=

∴ab=12,

∴k=12.

故答案为12.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网