题目内容

如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米.
(1)求钢缆CD的长度;(精确到0.1米)
(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米?
(参考数据:tan40°=0.84,sin40°=0.64,cos40°=

【答案】分析:(1)利用三角函数求得CD的长;
(2)过E作AB的垂线,垂足为F,根据三角函数求得BD、AF的长,则FB的长就是点E到地面的距离.
解答:解:(1)在Rt△BCD中,
≈6.7;(3分)

(2)在Rt△BCD中,BC=5,∴BD=5tan40°=4.2.(4分)
过E作AB的垂线,垂足为F,
在Rt△AFE中,AE=1.6,∠EAF=180°-120°=60°,
AF==0.8(6分)
∴FB=AF+AD+BD=0.8+2+4.20=7米.(7分)
答:钢缆CD的长度为6.7米,灯的顶端E距离地面7米.(8分)
点评:此题主要考查学生对坡度坡角的理解及解直角的综合运用能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网