题目内容
若一个数与是同类二次根式,则这个数可以是_______.
如图,在平面直角坐标系中,点A的坐标为(-1,0),点B的坐标为(4,0),经过点A点B抛物线y=x²+bx+c与y轴交于点C.
(1)求抛物线的关系式.
(2)△ABC的外接圆与y轴交于点D,在抛物线上是否存在点M使S△MBC=S△DBC,若存在,请求出点M的坐标.
(3)点P是直线y=-x上一个动点,连接PB,PC,当PB+PC+PO最小时,求点P的坐标及其最小值.
有一个正六面体,六个面上分别写有1---6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是__________.
知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个部分.
(1)如图①,直线m经过平行四边形ABCD对角线的交点O,则S四边形AEFB S四边形DEFC(填“>”“<”“=”);
(2)如图②,两个正方形如图所示摆放,O为小正方形对角线的交点,求作过点O的直线将整个图形分成面积相等的两部分;
(3)八个大小相同的正方形如图③所示摆放,求作直线将整个图形分成面积相等的两部分(用三种方法分割).
如图,在△ABC中,AB=BC=4,S△ABC=4,点P、Q、K分别为线段AB、BC、AC上任意一点,则PK+QK的最小值为_______
在四边形ABCD中,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD中任选两个使四边形ABCD为平行四边形的选法有( )
A. 6 B. 5 C. 4 D. 3
如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.
(1)求证:△CBG≌△CDG;
(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;
(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.
如图,菱形ABCD的两条对角线相交于O,若AC=8,BD=6,则菱形ABCD的周长是( )
A. 32 B. 24 C. 40 D. 20
若a+b=8,a﹣b=5,则a2﹣b2=__