题目内容
如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.![]()
解:(1)把A(﹣2,﹣4),O(0,0),B(2,0)三点的坐标代入y=ax2+bx+c中,得
,解这个方程组,得
。
∴抛物线的解析式为y=﹣
x2+x。
(2)由y=﹣
x2+x=﹣
(x﹣1)2+
,可得
抛物线的对称轴为x=1,并且对称轴垂直平分线段OB。
∴OM=BM。∴OM+AM=BM+AM。
连接AB交直线x=1于M点,则此时OM+AM最小。
过点A作AN⊥x轴于点N,![]()
在Rt△ABN中,
,
因此OM+AM最小值为
。
解析
练习册系列答案
相关题目