题目内容
若|mn-2|+(m-1)2=0,求 -
-
-
-…-
的值.
| 1 |
| mn |
| 1 |
| (m+1)(n+1) |
| 1 |
| (m+2)(n+2) |
| 1 |
| (m+2010)(n+2010) |
分析:首先根据非负数的性质可得mn-2=0,m-1=0,再解可得m、n的值,然后代入代数式可得-
-
-
-…-
=-
-
-
-…-
=-(1-
+
-
+
-
+…+
-
),进而可得答案.
| 1 |
| mn |
| 1 |
| (m+1)(n+1) |
| 1 |
| (m+2)(n+2) |
| 1 |
| (m+2010)(n+2010) |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2011×2012 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2011 |
| 1 |
| 2012 |
解答:解:∵|mn-2|+(m-1)2=0,
∴mn-2=0,m-1=0
解得:mn=2,m=1,
则n=2,
原式=-
-
-
-…-
=-(1-
+
-
+
-
+…+
-
)
=-(1-
)
=-
.
∴mn-2=0,m-1=0
解得:mn=2,m=1,
则n=2,
原式=-
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2011×2012 |
=-(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2011 |
| 1 |
| 2012 |
=-(1-
| 1 |
| 2012 |
=-
| 2011 |
| 2012 |
点评:此题主要考查了有理数的混合运算,关键是掌握运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.
练习册系列答案
相关题目