题目内容
我们把一元二次方程x2﹣2x﹣3=0的解看成是抛物线y=x2﹣2x﹣3与x轴的交点的横坐标,如果把方程x2﹣2x﹣3=0适当地变形,那么方程的解还可以看成是函数________与函数________的图象交点的横坐标(写出其中的一对).
二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值如下表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | ﹣1 | ﹣ | ﹣2 | ﹣ | … |
根据表格中的信息,完成下列各题:
(1)当x=3时,y=________ ;
(2)当x=_____时,y有最________ 值为________;
(3)若点A(x1,y1)、B(x2,y2)是该二次函数图象上的两点,且﹣1<x1<0,1<x2<2,试比较两函数值的大小:y1________ y2 ;
(4)若自变量x的取值范围是0≤x≤5,则函数值y的取值范围是________.
根据下表中二次函数y=ax2+bx+c(a≠0)的对应值:
x | 3.23 | 3.24 | 3.25 | 3.26 |
y | ﹣0.06 | ﹣0.02 | 0.03 | 0.09 |
判断方程ax2+bx+c=0(a≠0)的一个解x的范围是( )
A. 3.23<x<3.24 B. 3.24<x<3.25 C. 3.25<x<3.26 D. 不能确定
表是用计算器探索函数y=2x2﹣2x﹣10所得的数值,则方程2x2﹣2x﹣10=0的一个近似解为( )
x | ﹣2.1 | ﹣2.2 | ﹣2.3 | ﹣2.4 |
y | ﹣1.39 | ﹣0.76 | ﹣0.11 | 0.56 |
A. x=﹣2.1 B. x=﹣2.2 C. x=﹣2.3 D. x=﹣2.4