题目内容
【题目】在如图所示的正方形网格中,每个小正方形的边长都为1,△ABC的顶点都在格点上(网格线的交点).
![]()
(1)请在如图所示的网格平面内建立适当的平面直角坐标系,使点A坐标为(﹣1,2),点B的坐标为(﹣5,2);(画出直角坐标系)
(2)点C的坐标为( , )(直接写出结果)
(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;
①请在坐标系中画出△A2B2C2;
②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出点P2的坐标为( , );(直接写出结果)
③试在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,此时,QA2+QC2的长度之和最小值为 .(在图中画出点Q的位置,并直接写出最小值答案)
【答案】(1)见解析;(2)(-2,5);(3)①见解析;②点P2的坐标为(﹣m,n﹣6);③3![]()
【解析】
(1)建立适当的平面直角坐标系,根据点A坐标为(﹣1,2),点B的坐标为(﹣5,2)即可画出直角坐标系;
(2)根据坐标系即可写出点C的坐标;
(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,再将△A1B1C1沿y轴翻折至△A2B2C2;
①即可在坐标系中画出△A2B2C2;
②若点P(m,n)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,即可写出点P2的坐标;
③根据对称性即可在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,进而可以求出QA2+QC2的长度之和最小值.
(1)∵点A坐标为(﹣1,2),点B的坐标为(﹣5,2),
![]()
如图所示:即为所画出的直角坐标系;
(2)根据坐标系可知:
点C的坐标为(﹣2,5),
故答案为:﹣2,5;
(3)把△ABC先向下平移6个单位后得到对应的△A1B1C1,
再将△A1B1C1沿y轴翻折至△A2B2C2;
①如图即为坐标系中画出的△A2B2C2;
![]()
②点P(m,n)是△ABC边上任意一点,
P2是△A2B2C2边上与P对应的点,
∴点P2的坐标为(﹣m,n﹣6),
故答案为:﹣m,n﹣6;
③根据对称性可知:
在y轴上找一点Q,使得点Q到A2,C2两点的距离之和最小,
∴连接A2C1交y轴于点Q,此时QA2+QC2的长度之和最小,
![]()
即为A2C1的长,A2C1=3
,
∴QA2+QC2的长度之和最小值为3
.
故答案为:3
.