题目内容

周长为有理数的等腰三角形,底边上的高是底边长的数学公式,则该三角形的


  1. A.
    腰和底边的高都是有理数
  2. B.
    腰和底边的高都不是有理数
  3. C.
    腰是有理数,底边上的高是无理数
  4. D.
    腰是无理数,底边上的高是有理数
A
分析:首先根据三角形的各边都为正数,且周长为有理数可判断三角形的腰和底都为有理数,再根据等腰三角形的性质得出,底边上的高等于底边的一半,因为底边为有理数,所以高也为有理数,由此可判断出此题的正确答案.
解答:解:因为三角形的三边都必须为正数,且三边之和要为有理数,
所以三角形的三边都必须是有理数,即边AB,AC,BC都为有理数,
因为AD=BC,又根据等腰三角形三线合一的性质得到:
D为BC的中点,所以BD=DC=AD=BC,
所以BD,CD,AD都为有理数,即等腰三角形的腰和底边上的高都为有理数.
故选A
点评:此题考查等腰三角形的三线合一的性质,是一道把几何知识与代数知识融合在一块的综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网