题目内容
如图,边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为 cm2.
如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有( )
A. 1 B. 2 C. 3 D. 4
(1)计算:
(2)化简:
如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
因式分【解析】(1) (2)
在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.如记, , , ,已知: ,则m的值为( )
A. -20 B. -40 C. -60 D. -70
以下列各组线段为边,能组成三角形的是( )
A. 2cm、2cm、4cm B. 8cm、6cm、3cm
C. 2cm、6cm、3cm D. 11cm、4cm、6cm
一居民小区的大门栏杆如图所示,BA垂直于地面AE于点A,CD平行于地面AE,则∠ABC+∠BCD= 度.
如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).
(1)图2中的阴影部分的面积为 ;
(2)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是 ;
(3)根据(2)中的结论,若x+y=7,xy=,则x﹣y= ;
(4)实际上通过计算图形的面积可以探求相应的等式.根据图3,写出一个因式分解的等式 .