题目内容


如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为      

 


 π 

【考点】扇形面积的计算;坐标与图形性质;旋转的性质.

【分析】根据点A的坐标(﹣2,0),可得OA=2,再根据含30°的直角三角形的性质可得OB的长,再根据性质的性质和扇形的面积公式即可求解.

【解答】解:∵点A的坐标(﹣2,0),

∴OA=2,

∵△ABO是直角三角形,∠AOB=60°,

∴∠OAB=30°,

∴OB=OA=1,

∴边OB扫过的面积为: =π.

故答案为:π.

【点评】本题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R为圆的半径),或S=lR,l为扇形的弧长,R为半径.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网