题目内容
11.抛物线y=(x+2)2-3可以由抛物线y=x2+1平移得到,则下列平移过程正确的是( )| A. | 先向左平移2个单位,再向上平移4个单位 | |
| B. | 先向左平移2个单位,再向下平移4个单位 | |
| C. | 先向右平移2个单位,再向下平移4个单位 | |
| D. | 先向右平移2个单位,再向上平移4个单位 |
分析 根据平移前后的抛物线的顶点坐标确定平移方法.
解答 解:∵抛物线y=(x+2)2-3的顶点坐标为(-2,-3),
抛物线y=x2+1的顶点坐标为(0,1),
∴抛物线y=(x+2)2-3可以由抛物线y=x2+1向左平移2个单位,再向下平移4个单位得到.
故选:B.
点评 本题考查了二次函数图象与几何变换,此类题目利用顶点的平移解答更简便.
练习册系列答案
相关题目
6.要使算式“-1□1”的结果最小,在“□”中应填的运算符号是( )
| A. | 加号 | B. | 减号 | C. | 乘号 | D. | 除号 |
3.用简便方法计算[-$\frac{5}{12}$+$\frac{5}{4}$-$\frac{5}{6}$-(-$\frac{5}{18}$)]×(-36)时要运用( )
| A. | 分配律 | B. | 交换律 | C. | 乘法结合律 | D. | 以上都不用 |
20.下列各组数中互为相反数的一组是( )
| A. | -(-8)与+(+8) | B. | -(+8)与-|-8| | C. | -22与(-2)2 | D. | -|-8|与+(-8) |
1.下列说法正确的是( )
| A. | 1的立方根是±1 | B. | $\sqrt{4}$=±2 | C. | $\sqrt{81}$的平方根是±3 | D. | 0没有平方根 |