题目内容
下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是( )
(1)化简:(a+3)(a-3)+a(4-a)
(2)解不等式组:.
如图,平行四边形ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是( )
A.6 B.8 C.9 D.10
如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是( )
A.(0,0) B.(0,1) C.(0,2) D.(0,3)
如图,在△ABC中,∠C=90°,AB的垂直平分线交AB与D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是( )
A.13 B.10 C.12 D.5
回顾旧知:在探究有关正多边形的有关性质时,我们是从那几个方面展开的?探究的方法与过程又是怎样的?(不要求回答)
温馨提示,如图1,是一个边长为a的正六边形.我们知道它具有如下的性质:①正六边形的每条边长度相等;②正六边形的六个内角相等,都是120°;③正六边形的内角和为720°;④正六边形的外角和为360°.等.
解答问题:
(1)观察图2,请你在下面的横线上,再写出边长为a的正六边形所具有不同于上述的性质(不少于5条): .
(2)尺规作图:在图2中作出圆内接正六边形的内切圆(不要求写作法,只保留作图痕迹);
(3)求出这个正六边形外接圆半径与内切圆半径的比值.
如图,菱形ABCD周长为8cm.∠BAD=60°,则AC= cm.
在平面直角坐标系中,点A的坐标为(0,1),抛物线y=ax2+bx+c的顶点为坐标原点O,且与直线y=2x-4有唯一交点B.
(1)抛物线的函数表达式为 ;
(2)如图1,设直线y=2x-4与y轴交于点D,点P是抛物线上一点.
①过点P作PE∥y轴,交直线BD于点E,若△ADE与△ABD相似,求点P的坐标;
②将△ABD沿直线BD折叠后,点A落在点C处(图2),是否存在点P,使得S△PCD=3S△PAB?如果存在,请求出所有满足条件的点P的坐标;如果不存在,请说明理由.
已知a>b.若c是任意实数,则下列不等式中总是成立的是( )
A.a-c<b-c B.a+c>b+c
C.ac<bc D.ac>bc