题目内容

如图,正方形DEMF内接于△ABC,AQ⊥BC于Q,交DE于P,若S△ADE=1,S正方形DEFM=4,求S△ABC

解:∵S正方形DEFM=4,
∴DE=2,
∵S三角形ADE=1,
∴AP=1,
又∵DE∥BC,∴△ADE∽△ABC,

∴S△ABC=•S△ADE=9.
分析:根据正方形的面积求出边长是2,再根据三角形的面积求出三角形的高AP是1,然后根据相似三角形对应高的比等于相似比,再利用相似三角形面积的比等于相似比的平方即可求出.
点评:本题利用相似三角形对应高的比等于相似比,相似三角形面积的比等于相似比求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网