题目内容
已知E为?ABCD内任一点,?ABCD的面积为40,那么S△EAB+S△ECD=分析:过E作直线MN⊥AB,则MN⊥CD,根据S△EAB+S△ECD=
AB•EM+
CD•EN=
AB(EM+EN)=
AB•MN=
S?ABCD即可求解.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
解答:解:过E作直线MN⊥AB,则MN⊥CD,
S△EAB=
AB•EM,S△ECD=
CD•EN.
S△EAB+S△ECD=
AB•EM+
CD•EN=
AB(EM+EN)=
AB•MN=
S?ABCD=20.
故答案是:20.
S△EAB=
| 1 |
| 2 |
| 1 |
| 2 |
S△EAB+S△ECD=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
故答案是:20.
点评:本题主要考查了平行四边形的性质,正确理解S△EAB+S△ECD=
AB•EM+
CD•EN=
AB(EM+EN)=
AB•MN=
S?ABCD是解题的关键.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目