题目内容
【题目】甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:
(1)港口A与小岛C之间的距离;
(2)甲轮船后来的速度.
![]()
【答案】(1)A、C间的距离为(15
+15)海里 (2)5
海里/小时
【解析】
试题(1)作BD⊥AC于点D
由题意可知:AB=30×1=30,∠BAC=30°,∠BCA=45°
在Rt△ABD中
∵AB=30,∠BAC=30°
∴BD=15,AD=ABcos30°=15![]()
在Rt△BCD中,
∵BD=15,∠BCD=45°
∴CD=15,BC=15![]()
∴AC=AD+CD=15
+15
即A、C间的距离为(15
+15)海里 6分
(2)∵AC=15
+15
轮船乙从A到C的时间为
=
+1
由B到C的时间为
+1-1=![]()
∵BC=15![]()
∴轮船甲从B到C的速度为
=5
(海里/小时)
答:轮船甲从B到C的速度为5
海里/小时
练习册系列答案
相关题目