ÌâÄ¿ÄÚÈÝ
11£®Ä³¹«Ë¾ÄâÓÃÔËÓªÖ¸ÊýyÀ´Á¿»¯¿¼ºË˾»úµÄ¹¤×÷Òµ¼¨£¬ÔËÓªÖ¸Êý£¨y£©ÓëÔËÊä´ÎÊý£¨n£©ºÍƽ¾ùËÙ¶È£¨x£©Ö®¼äÂú×ã¹ØÏµÊ½Îªy=ax2+bnx+100£¬µ±n=1£¬x=30ʱ£¬y=190£»µ±n=2£¬x=40ʱ£¬y=420£®£¨1£©Óú¬xºÍnµÄʽ×Ó±íʾy£»
£¨2£©µ±ÔËÊä´ÎÊý¶¨Îª3´Î£¬Çó»ñµÃ×î´óÔËÓªÖ¸ÊýʱµÄƽ¾ùËÙ¶È£»
£¨3£©Èôn=2£¬x=40£¬ÄÜ·ñÔÚnÔö¼Óm%£¨m£¾0£©£¬Í¬Ê±x¼õÉÙm%µÄÇé¿öÏ£¬¶øyµÄÖµ±£³Ö²»±ä£¿ÈôÄÜ£¬Çó³ömµÄÖµ£»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
²Î¿¼¹«Ê½£ºÅ×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©µÄ¶¥µã×ø±êÊÇ£¨-$\frac{b}{2a}$£¬$\frac{{4ac-{b^2}}}{4a}$£©
·ÖÎö £¨1£©°Ñµ±n=1£¬x=30ʱ£¬y=190£»µ±n=2£¬x=40ʱ£¬y=420£»´úÈëy=ax2+bnx+100£¬½â·½³Ì×é¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©°Ñn=3´úÈ룬ȷ¶¨º¯Êý¹ØÏµÊ½£¬È»ºóÇóy×î´óֵʱxµÄÖµ¼´¿É£»
£¨3£©¸ù¾ÝÌâÒâÁгö¹ØÏµÊ½£¬Çó³öµ±y=420ʱmµÄÖµ¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉÌõ¼þ¿ÉµÃ£¬$\left\{{\begin{array}{l}{190=900a+30b+100}\\{420=1600a+80b+100}\end{array}}\right.$
½âµÃ$\left\{{\begin{array}{l}{a=-\frac{1}{10}}\\{b=6}\end{array}}\right.$£®
¹Ê$y=-\frac{1}{10}{x^2}+6nx+100$£»
£¨2£©µ±n=3ʱ£¬$y=-\frac{1}{10}{x^2}+18x+100$£¬
ÓÉ$a=-\frac{1}{10}£¼0$¿ÉÖª£¬ÒªÊ¹y×î´ó£¬$x=-\frac{18}{{2¡Á£¨-\frac{1}{10}£©}}=90$£»
£¨3£©°Ñn=2£¬x=40´øÈë$y=-\frac{1}{10}{x^2}+6nx+100$£¬¿ÉµÃy=420£¬
ÔÙÓÉÌâÒ⣬µÃ$420=-\frac{1}{10}{[40£¨1-m%£©]^2}+6¡Á2£¨1+m%£©¡Á40£¨1-m%£©+100$£¬
¼´2£¨m%£©2-m%=0
½âµÃm%=$\frac{1}{2}$£¬»òm%=0£¨ÉáÈ¥£©
Ôòm=50£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄÓ¦Óã¬ÄѶȽϴ󣬽â´ð±¾ÌâµÄ¹Ø¼üÊǸù¾ÝÌâÄ¿ÖÐËù¸øµÄÐÅÏ¢£¬¶Á¶®ÌâÒâÁгöº¯Êý¹ØÏµÊ½£¬ÒªÇóͬѧÃÇÕÆÎÕÇó¶þ´Îº¯Êý×îÖµµÄ·½·¨£¬´ËÌâ½ÏÂé·³£¬¿¼²éѧÉúÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦