题目内容
【题目】在
中,
,点
为
的中点.
(1)如图1,E为线段DC上任意一点,将线段
绕点D逆时针旋转90°得到线段
,连接
,过点F作
,交直线
于点
.判断
与
的数量关系并加以证明;
(2)如图2,若
为线段
的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.![]()
【答案】(1)FH=FC.理由见解析;(2)FH与FC仍然相等.理由见解析
【解析】
(1)延长DF交AB于点G,根据三角形中位线的判定得出点G为AB的中点,根据中位线的性质及已知条件AC=BC,得出DC=DG,从而EC=FG,易证∠1=∠2=90°-∠DFC,∠CEF=∠FGH=135°,由AAS证出△CEF≌△FGH.∴CF=FH.
(2)通过证明△CEF≌△FGH(ASA)得出.
(1)FH与FC的数量关系是:FH=FC.
证明如下:延长DF交AB于点G,![]()
由题意,知∠EDF=∠ACB=90°,DE=DF,
∴DG∥CB,
∵点D为AC的中点,
∴点G为AB的中点,且DC=
AC,
∴DG为△ABC的中位线,
∴DG=
BC.
∵AC=BC,
∴DC=DG,
∴DC-DE=DG-DF,
即EC=FG.
∵∠EDF=90°,FH⊥FC,
∴∠1+∠CFD=90°,∠2+∠CFD=90°,
∴∠1=∠2.
∵△DEF与△ADG都是等腰直角三角形,
∴∠DEF=∠DGA=45°,
∴∠CEF=∠FGH=135°,
∴△CEF≌△FGH,
∴CF=FH.
(2)FH与FC仍然相等.
理由:由题意可得出:DF=DE,
∴∠DFE=∠DEF=45°,
∵AC=BC,
∴∠A=∠CBA=45°,
∵DF∥BC,
∴∠CBA=∠FGB=45°,
∴∠FGH=∠CEF=45°,
∵点D为AC的中点,DF∥BC,
∴DG=
BC,DC=
AC,
∴DG=DC,
∴EC=GF,
∵∠DFC=∠FCB,
∴∠GFH=∠FCE,
在△FCE和△HFG中
,
∴△FCE≌△HFG(ASA),
∴HF=FC.