题目内容
下面是“以已知线段为直径作圆”的尺规作图过程.
请回答:该作图的依据是________________________。
不等式组的解集在数轴上表示为( )
A. B. C. D.
如图,把一块含有45°角的直角三角板两个顶点放在直尺的对边上,如果∠1=20°,则∠2的度数是_______ .
在等腰△ABC中,
(1)如图1,若△ABC为等边三角形,D为线段BC中点,线段AD关于直线AB的对称线段为线段AE,连接DE,则∠BDE的度数为___________;
(2)若△ABC为等边三角形,点D为线段BC上一动点(不与B,C重合),连接AD并将线段AD绕点D逆时针旋转60°得到线段DE,连接BE.
①根据题意在图2中补全图形;
②小玉通过观察、验证,提出猜测:在点D运动的过程中,恒有CD=BE.经过与同学们的充分讨论,形成了几种证明的思路:
思路1:要证明CD=BE,只需要连接AE,并证明△ADC≌△AEB;
思路2:要证明CD=BE,只需要过点D作DF∥AB,交AC于F,证明△ADF≌△DEB;
思路3:要证明CD=BE,只需要延长CB至点G,使得BG=CD,证明△ADC≌△DEG;
……
请参考以上思路,帮助小玉证明CD=BE.(只需要用一种方法证明即可)
(3)小玉的发现启发了小明:如图3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此时小明发现BE,BD,AC三者之间满足一定的的数量关系,这个数量关系是______________________.(直接给出结论无须证明)
如图,在平面直角坐标系xOy中,直线与双曲线相交于点A(m,3),B(-6,n),与x轴交于点C.
(1)求直线的解析式;
(2)若点P在x轴上,且,求点P的坐 标(直接写出结果).
分解因式: =______________
某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是( )
A. 1.2,1.3 B. 1.3,1.3 C. 1.4,1.35 D. 1.4,1.3
已知:线段AB.
求作:以AB为直径的⊙O.
作法:如图,
(1)分别以A,B为圆心,大于AB的长为半径
作弧,两弧相交于点C,D;
(2)作直线CD交AB于点O;
(3)以O为圆心,OA长为半径作圆.
则⊙O即为所求作的.
请回答:该作图的依据是_______________________________________________.
如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2),AC⊥x轴于C,连结BC.
(1)求反比例函数的表达式;
(2)根据图象直接写出当mx>时,x的取值范围;
(3)在平面内是否存在一点D,使四边形ABDC为平行四边形?若存在,请求出点D坐标;若不存在,请说明理由.